This version is still in development and is not considered stable yet. For the latest stable version, please use Micrometer 1.14.2! |
Micrometer OTLP
OpenTelemetry is a CNCF incubating project for providing standards for telemetry data. OpenTelemetry protocol (OTLP) is a vendor-neutral protocol that you can use to send data to various backends that support it. You can read the corresponding docs on how the metrics are ingested and can be visualized in the respective vendor docs.
1. Installing micrometer-registry-otlp
It is recommended to use the BOM provided by Micrometer (or your framework if any), you can see how to configure it here. The examples below assume you are using a BOM.
1.1. Gradle
After the BOM is configured, add the following dependency:
implementation 'io.micrometer:micrometer-registry-otlp'
The version is not needed for this dependency since it is defined by the BOM. |
1.2. Maven
After the BOM is configured, add the following dependency:
<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-otlp</artifactId>
</dependency>
The version is not needed for this dependency since it is defined by the BOM. |
2. Configuring
The following example configures an OTLP registry:
OtlpConfig otlpConfig = new OtlpConfig() {
@Override
public String get(final String key) {
return null;
}
};
MeterRegistry registry = new OtlpMeterRegistry(otlpConfig, Clock.SYSTEM);
OtlpConfig
is an interface with a set of default methods. If, in the implementation of get(String k)
, rather than returning null
, you instead bind it to a property source (for example, a simple Map
can work), you can override the default configuration through properties. For example, Micrometer’s Spring Boot support binds properties prefixed with management.otlp.metrics.export
directly to the OtlpConfig
:
management:
otlp:
metrics:
export:
# Supported configs
url: "https://otlp.example.com:4318/v1/metrics"
batchSize: 15000
aggregationTemporality: "cumulative"
headers:
header1: value1
step: 30s
resourceAttributes:
key1: value1
-
url
- The URL to which data is reported. Environment variablesOTEL_EXPORTER_OTLP_METRICS_ENDPOINT
andOTEL_EXPORTER_OTLP_ENDPOINT
are also supported in the default implementation. If a value is not provided, it defaults tolocalhost:4318/v1/metrics
-
batchSize
- number ofMeter
s to include in a single payload sent to the backend. The default is 10,000. -
aggregationTemporality
- Aggregation temporality determines how the additive quantities are expressed, in relation to time. The environment variableOTEL_EXPORTER_OTLP_METRICS_TEMPORALITY_PREFERENCE
is supported by the default implementation. The supported values arecumulative
ordelta
. Defaults tocumulative
. -
headers
- Additional headers to send with exported metrics. This can be used for authorization headers. By default, headers are loaded from the config. If that is not set, they can be taken from the environment variablesOTEL_EXPORTER_OTLP_HEADERS
andOTEL_EXPORTER_OTLP_METRICS_HEADERS
. If a header is set in both the environmental variables, the header in the latter overrides the former. -
step
- the interval at which metrics will be published. The environment variableOTEL_METRIC_EXPORT_INTERVAL
is supported by the default implementation. If a value is not provided, defaults to 1 minute. -
resourceAttributes
- Resource attributes are used for all metrics published. By default, Micrometer adds the following resource attributes:
Key | Default value |
---|---|
telemetry.sdk.name |
io.micrometer |
telemetry.sdk.language |
java |
telemetry.sdk.version |
<micrometer-core-version> (e.g.: 1.11.0) |
service.name |
unknown_service |
If this config is empty, resource attributes are loaded from the OTEL_RESOURCE_ATTRIBUTES
environmental variable. You can override service.name
by setting the OTEL_SERVICE_NAME
environmental variable, and this takes precedence over other configs.
3. Supported metrics
Metric points define the different data points that are supported in OTLP. Micrometer supports exporting the below data points in OTLP format,
The following table maps OTLP data points and the Micrometer meters:
OTLP data point | Micrometer meter type |
---|---|
Sums |
Counter, FunctionCounter |
Gauge |
Gauge, TimeGauge, MultiGauge |
Histogram |
Timer, DistributionSummary, LongTaskTimer, FunctionTimer (only sum and count are set) |
Summary |
Timer, DistributionSummary, LongTaskTimer |
Note:
-
max
on the Histogram data point is supported only in delta aggregation temporality. This is because the values represented by cumulative min and max stabilize as more events are recorded and are less useful when recorded over application’s lifecycle. -
Currently, Micrometer only exports metadata for type
Meter
to OTLP.
4. Histograms and Percentiles
Micrometer Timer
and DistributionSummary
support configuring client-side percentiles and percentile histograms. The OTLP specification terms the Summary data point (client-side percentiles) as legacy and not recommended for new applications. The Summary data point also cannot have min/max associated with it. Due to these reasons, Micrometer prefers exporting Timers and DistributionSummary as a Histogram data point. By default, a Timer/DistributionSummary without any additional percentile/histogram config is exported as a Histogram data point. However, by configuring the timer to generate only client-side percentiles, by using publishPercentiles
, you can change this to a Summary data point that exports pre-calculated percentiles. When both publishPercentiles
and (publishPercentileHistogram
or serviceLevelObjectives
) are configured, the Histogram data point is preferred and pre-calculated percentiles are not generated. The following table describes which data point is used with different configurations:
Configuration | OTLP data point |
---|---|
publishPercentiles |
Summary |
publishPercentileHistogram |
Histogram |
serviceLevelObjectives |
Histogram |
publishPercentiles and (publishPercentileHistogram/serviceLevelObjectives) |
Histogram |
Alternatively, if you use Spring Boot, you can use the per-meter properties to configure this behavior.
If you want to generate a Histogram data point for a Timer with name test.timer
and default buckets generated by Micrometer, use:
management.metrics.distribution.percentiles-histogram.test.timer=true
For buckets with customized SLO, use:
management.metrics.distribution.slo.test.timer=10.0,100.0,500.0,1000.0
Alternatively, if you want to generate Summary data point for a timer with name test.timer
and 90th and 99th percentiles, you can use:
management.metrics.distribution.percentiles.test.timer=0.9,0.99